UOP Amine Guard™ FS Technology for Acid Gas Removal
Agenda

- Overview of the Amine Guard FS process
- UCARSOL™ Solvent characteristics
- Amine Guard FS flow scheme comparison
- Equipment features
- UOP technology transfer
- UOP Experience and Technical Services
- Summary
Overview of the Amine Guard FS Process

- Licensed amine technology
- Removal of CO₂ & H₂S to low levels or
- Selective H₂S Removal
 - Low H₂S spec, with as much as 75% CO₂ slip
- UCARSOL Formulated Solvent from Dow
- Several flow scheme options available
- UOP MD™ Trays or Raschig Super Rings to maximize performance
Amine Guard FS Process

Do’s and Don’ts

Do’s
- Remove CO\(_2\) & H\(_2\)S
- Selective H\(_2\)S removal
- Natural Gas to pipeline specs
- Natural Gas to LNG specs
- Downstream of a membrane for CO\(_2\)/H\(_2\)S polishing
- Treat Synthesis gas for H\(_2\), NH\(_3\) or other applications

Don'ts
- Mercaptan Removal
Markets served include:

- Synthesis gas treating for CO$_2$ removal in synthesis gas plants, such as direct iron ore reduction
- Synthesis gas treating for selective H$_2$S removal in integrated gasification combined cycle (IGCC) plants
- Natural gas treating for selective removal of H$_2$S and partial removal of CO$_2$ for pipeline specifications
- High CO$_2$ partial pressure service for reduced energy consumption compared with conventional amines, such as steam reformed ammonia plants
Agenda

- Overview of the Amine Guard FS process
- UCARSOL Solvent characteristics
- Amine Guard FS flow scheme comparison
- Equipment features
- UOP technology transfer
- UOP Experience and Technical Services
- Summary
UCARSOL Solvent Characteristics

UCARSOL AP-800 Series Solvent Features:

- State of the art amine technology
- MDEA based solvent with low concentrations of activator
 - Activator accelerates slow overall kinetics of CO$_2$ reaction with MDEA
 - Solvent formulation is chosen to provide the desired amount of CO$_2$ slip
 - AP-814 used for LNG applications to achieve very low residual H$_2$S & CO$_2$ content of product gas
 - Activator significantly reduces packed heights of towers
UCARSOL AP-800 Series Solvent Features (cont’d):

- High thermal and chemical stability
- Non-corrosive (no corrosion inhibitors needed)
- No solvent reclaiming or purging for typical applications
- Non – foaming
- Inventory stored in worldwide locations
Agenda

- Overview of the Amine Guard FS process
- UCARSOL™ Solvent characteristics
- Amine Guard FS flow scheme comparison
- Equipment features
- UOP technology transfer
- UOP Experience and Technical Services
- Summary
Amine Guard FS Flow Scheme Options

- Feed CO₂ & H₂S partial pressures vs. product specs
- Higher PP allows exploitation of flash regeneration
- Low level H₂S product specifications require some thermal regeneration
- Each application will have its own optimal flow scheme solution
Four Main Amine Guard FS Flow Schemes

- Flash only
- Conventional (absorber + thermal regeneration)
- 1-Stage (absorber + flash column + thermal regeneration)
- 2-Stage (1-stage system that also includes semi-lean solvent stream)
Flash-Only Flow Scheme - Application

- Simple flowscheme and therefore relatively inexpensive
- Low energy requirements
- Ideal for bulk removal of CO2
- Partial removal of H2S
• Can achieve CO$_2$ levels below 50 ppm for LNG specifications
• Lower solvent requirements than flash-only system
• Thermal regeneration for higher level of removal
Amine Guard FS Process

2-Stage

Amine Absorber

Sweet Gas

Make-Up Water

Lean Solution Pump

Lean Solution Cooler

Acid Gas

Acid Gas KO Drum

Filtration System

Amine Stripper

Amine Reboiler

Rich Flash Column

Rich Flash Drum

Rich Solution Pump

Semi-Lean Solution Pump

Lean/Rich Exchanger

Lean Solution Booster Pump

Make-Up Water

Flash Gas to Fuel Header

Acid Gas Cooler

Reflux Pump

Make-Up Water

UOP 5241B-16
2-Stage Flow Scheme - Application

Advantages

- Much lower duty requirements than single-stage system
- Flexibility to trade-off solvent flow rate for thermal regenerator duty or vice-versa

Disadvantages

- Solvent requirements always higher than those for single-stage system, resulting in higher capital costs (absorber, pumps, and piping)
Flow Scheme Comparison

Flash Only Flowscheme
- Simplest flowscheme and therefore relatively inexpensive
- Low energy requirements
- Ideal for bulk removal of CO2
- Partial removal of H2S

Conventional and 1-stage Flowschemes
- Can achieve CO$_2$ levels below 50 ppm for LNG specifications
- Lower solvent requirements than flash-only system
- Thermal regeneration for higher level of removal

2-stage Flowscheme
- Much lower duty requirements than single-stage system
- Flexibility to trade-off solvent flow rate for thermal regenerator duty or vice-versa
Flow Scheme Comparison - Reboiler Duty

1000’s BTU/lbmol CO₂ Removed

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Duty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>45-60</td>
</tr>
<tr>
<td>1-stage</td>
<td>32-40</td>
</tr>
<tr>
<td>2-stage</td>
<td>12-18</td>
</tr>
<tr>
<td>Flash only</td>
<td>8-10</td>
</tr>
</tbody>
</table>

Higher feed CO₂ PP yields lower duty
Flow Scheme Comparison – Example 1

<table>
<thead>
<tr>
<th></th>
<th>1-Stage</th>
<th>2-Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed gas rate (MM SCFD)</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>CO₂ and H₂S in feed (mole %)</td>
<td></td>
<td>12.1</td>
</tr>
<tr>
<td>Absorber pressure (psi)</td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>Lean solvent rate (gal / min)</td>
<td>2280</td>
<td>1378</td>
</tr>
<tr>
<td>Semi-Lean solvent rate (gal / min)</td>
<td>-----</td>
<td>7924</td>
</tr>
<tr>
<td>Total pump electricity usage (kW)</td>
<td>1010</td>
<td>3372</td>
</tr>
<tr>
<td>Thermal regenerator duty (MM Btu / hr)</td>
<td>101</td>
<td>59</td>
</tr>
<tr>
<td>Absorber diameter large section (ft)</td>
<td>9.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>
Flow Scheme Comparison – Example 2

<table>
<thead>
<tr>
<th></th>
<th>1-Stage</th>
<th>2-Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed gas rate (MM SCFD)</td>
<td></td>
<td>410</td>
</tr>
<tr>
<td>(\text{CO}_2) and (\text{H}_2\text{S}) in feed (mole %)</td>
<td></td>
<td>18.0</td>
</tr>
<tr>
<td>Absorber pressure (psi)</td>
<td></td>
<td>1070</td>
</tr>
<tr>
<td>Lean solvent rate (gal / min)</td>
<td>6251</td>
<td>2835</td>
</tr>
<tr>
<td>Semi-Lean solvent rate (gal / min)</td>
<td>-----</td>
<td>9676</td>
</tr>
<tr>
<td>Thermal regenerator duty (MM Btu / hr)</td>
<td>235</td>
<td>125</td>
</tr>
<tr>
<td>Total pump electricity usage (kW)</td>
<td>4071</td>
<td>7389</td>
</tr>
<tr>
<td>Absorber diameter large section (ft)</td>
<td>12.0</td>
<td>14.0</td>
</tr>
</tbody>
</table>
Agenda

• Overview of the Amine Guard FS process
• UCARSOL™ Solvent characteristics
• Amine Guard FS flow scheme comparison
• Equipment features
• UOP technology transfer
• UOP Experience and Technical Services
• Summary
Amine Guard FS Process
Equipment Features

- Raschig Super-Rings packing or MD Trays for absorber, flash, and thermal regenerator internals to minimize tower diameter and pressure drop

- Welded plate and frame heat exchangers for Lean/Rich exchanger typically specified
 - Conventional design is Shell and Tube exchangers
 - P&F is lower cost, smaller plot space
 - P&F also tighter approach temperature, for additional heat integration

- Power Recovery Turbines

- UOP specialists assess the optimal equipment for each application
Exchangers – recent example

• S&T design required 8 shells
 – TIC - $6MM

• P&F, with tighter approach, 2 in parallel plus 1 warehouse spare
 – TIC - $1.4 MM (with spare)
 – Also, 10% reduction in reboiler duty
 • $1.3MM/yr in steam savings
Amine Guard FS Process
Equipment Features

Power Recovery Turbines

- Large Natural Gas Applications may be able to justify Power Recovery on Amine pressure let down from high pressure absorber to low pressure regenerator
- Recovered mechanical power can justify investment through power consumption savings
- Recent example – 2200 kW savings
 - $700,000/yr electrical savings
 - PRT equipment cost - $400,000
Agenda

• Overview of the Amine Guard FS process
• UCARSOL™ Solvent characteristics
• Amine Guard FS flow scheme comparison
• Equipment features
• UOP technology transfer
• UOP Experience and Technical Services
• Summary
Engineering With YOU Every Step of the Way

Experience IS the Difference

Project Time Line 20+ Years

Planning
Licensor Selection
Basic Design
Training
Detailed Design
Construction
Inspection
Catalyst Loading
Startup
Test Run
Operation

Process Estimates, Plant Visits
Schedule A
Consultation and Review
Startup Services
Ongoing Services
Engineering With YOU Every Step of the Way

Experience IS the Difference
The Schedule A Package

• First step in comprehensive transfer of technology
• Design data to YOUR preferred contractor
• Ensures your unit is:
 – Bid accurately
 – Constructed as designed
 – Reliable

Experience IS the Difference
UOP Schedule A Package

Equipment Specifications
- Columns, Vessels, and Reactors
- Fired Heaters
- Exchangers
- Pumps and Compressors
- Instruments
- Piping
- Hydraulics
- Operating manual

Drawings
- Process Flow Diagrams
- Piping and Instrument Diagrams
- Material Selection Diagram
- Mechanical Equipment
- Typical Plot Plan

Standard Specifications
- Additional design information
- Design basis
- Stream and heat transfer data
- Hydraulics
- Operating manual
UOP Engineering Experience

- Schedule A Designs: 150 - 200 per year
- Process Studies: 50 - 75 per year
- Revamps: 100 - 150 per year
Superior Technology Delivery

- Several Study & Design package options as starting points for customizing to best evaluate options & meet project objectives
- Work with EVERY major contractor worldwide
- Gas Processing Operations Experts
- Secure Private On line Transfer Server (SPOTS) enables IMMEDIATE secure transfer of project design data via the web
- UOP leading the industry to the next generation of design systems optimization (ZyCad) \Rightarrow fastest and lowest cost projects
Agenda

- Overview of the Amine Guard FS process
- UCARSOL™ Solvent characteristics
- Amine Guard FS flow scheme comparison
- Equipment features
- UOP technology transfer
- **UOP Experience and Technical Services**
- Summary
Commercial Experience

<table>
<thead>
<tr>
<th>Process</th>
<th>No. of Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amine Guard II</td>
<td>220+</td>
</tr>
<tr>
<td>Amine Guard FS</td>
<td>30+</td>
</tr>
<tr>
<td>Dow UCARSOL</td>
<td>550+</td>
</tr>
</tbody>
</table>
Amine Guard FS Units

<table>
<thead>
<tr>
<th>Project Location</th>
<th>Capacity MMSCFD</th>
<th>Feed CO₂/ H₂S ppmv</th>
<th>Product CO₂/ H₂S ppmv</th>
<th>S/U Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid East</td>
<td>750</td>
<td>23,000/8,000</td>
<td>50/3</td>
<td>2004</td>
</tr>
<tr>
<td>Mid East</td>
<td>195</td>
<td>72,000/15,000</td>
<td>500/50</td>
<td>2002</td>
</tr>
<tr>
<td>Far East</td>
<td>51</td>
<td>30,000/60</td>
<td>80/4</td>
<td>2002</td>
</tr>
<tr>
<td>Mid East</td>
<td>520</td>
<td>83,000/10</td>
<td>29,000/4</td>
<td>2000</td>
</tr>
<tr>
<td>Mid East</td>
<td>52</td>
<td>143,000/17,900</td>
<td>5,000/4</td>
<td>1999</td>
</tr>
<tr>
<td>Mid East</td>
<td>122</td>
<td>52,000/540</td>
<td>30,000/8</td>
<td>1994</td>
</tr>
<tr>
<td>Mid East</td>
<td>93</td>
<td>40,000/6,000</td>
<td>100/4</td>
<td>1998</td>
</tr>
</tbody>
</table>
Amine Guard FS Units

<table>
<thead>
<tr>
<th>Project Location</th>
<th>Capacity MMSCFD</th>
<th>Feed CO₂/ H₂S ppmv</th>
<th>Product CO₂/ H₂S ppmv</th>
<th>S/U Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid East</td>
<td>750 x 2</td>
<td>23,000/8,000</td>
<td>50/3</td>
<td>2005</td>
</tr>
<tr>
<td>Mid East</td>
<td>750</td>
<td>23,000/8,000</td>
<td>50/3</td>
<td>2006</td>
</tr>
<tr>
<td>Far East</td>
<td>425</td>
<td>230,000/55</td>
<td>40,000/5</td>
<td>2005</td>
</tr>
<tr>
<td>Mid East</td>
<td>1,262</td>
<td>40,000/10,300</td>
<td>5,500/20</td>
<td>2006</td>
</tr>
<tr>
<td>Mid East</td>
<td>3,200</td>
<td>23,100/8,000</td>
<td>8,000/3</td>
<td>2006</td>
</tr>
<tr>
<td>Mid East</td>
<td>128</td>
<td>80,000/75</td>
<td>50/7</td>
<td>2006</td>
</tr>
<tr>
<td>Mid East</td>
<td>1,530 x 2</td>
<td>25,200/8,220</td>
<td>25/2</td>
<td>2007</td>
</tr>
<tr>
<td>Mid East</td>
<td>794</td>
<td>46,000/30,000</td>
<td>9,400/20</td>
<td>2007</td>
</tr>
<tr>
<td>Far East</td>
<td>800</td>
<td>230,000/38</td>
<td>3,000/1</td>
<td>2008</td>
</tr>
</tbody>
</table>
Technical Service

Guaranteed Performance

Before
- Design Checks
- Training
- HAZOP

During
- Unit Checkout
- On-Site Training
- Test Run

After
- Continuing Services
- Data Link Access to Process Experts
 - Remote Process Monitoring
 - Analytical Support
- Symposia
- Process Training
- Turnaround Service
- Inspection
Amine Guard FS Process Summary

- UOP has extensive commercial experience and technology expertise for acid gas removal
- Amine Guard FS utilizes state of the art UCARSOL Formulated Solvent
- Applicable to a wide variety of applications including natural gas and synthesis gas
- The Amine Guard FS process is a proven licensed technology
- Licensed approach provides ongoing technical service
- UOP Schedule A is an efficient and proven technology transfer system
- UOP can assist you in optimizing and maximizing the value of your project